Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
ANZ J Surg ; 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37974532

RESUMO

Motor function of the colon is essential for health. Our current understanding of the mechanisms that underlie colonic motility are based upon a range of experimental techniques, including molecular biology, single cell studies, recordings from muscle strips, analysis of part or whole organ ex vivo through to in vivo human recordings. For the surgeon involved in the clinical management of colonic conditions this amounts to a formidable volume of material. Here, we synthesize the key findings from these various experimental approaches so that surgeons can be better armed to deal with the complexities of the colon.

2.
Cell Mol Gastroenterol Hepatol ; 16(4): 573-605, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37355216

RESUMO

BACKGROUND AND AIMS: Gut functions including motility, secretion, and blood flow are largely controlled by the enteric nervous system. Characterizing the different classes of enteric neurons in the human gut is an important step to understand how its circuitry is organized and how it is affected by disease. METHODS: Using multiplexed immunohistochemistry, 12 discriminating antisera were applied to distinguish different classes of myenteric neurons in the human colon (2596 neurons, 12 patients) according to their chemical coding. All antisera were applied to every neuron, in multiple layers, separated by elutions. RESULTS: A total of 164 combinations of immunohistochemical markers were present among the 2596 neurons, which could be divided into 20 classes, with statistical validation. Putative functions were ascribed for 4 classes of putative excitatory motor neurons (EMN1-4), 4 inhibitory motor neurons (IMN1-4), 3 ascending interneurons (AIN1-3), 6 descending interneurons (DIN1-6), 2 classes of multiaxonal sensory neurons (SN1-2), and a small, miscellaneous group (1.8% of total). Soma-dendritic morphology was analyzed, revealing 5 common shapes distributed differentially between the 20 classes. Distinctive baskets of axonal varicosities surrounded 45% of myenteric nerve cell bodies and were associated with close appositions, suggesting possible connectivity. Baskets of cholinergic terminals and several other types of baskets selectively targeted ascending interneurons and excitatory motor neurons but were significantly sparser around inhibitory motor neurons. CONCLUSIONS: Using a simple immunohistochemical method, human myenteric neurons were shown to comprise multiple classes based on chemical coding and morphology and dense clusters of axonal varicosities were selectively associated with some classes.


Assuntos
Sistema Nervoso Entérico , Plexo Mientérico , Humanos , Sistema Nervoso Entérico/metabolismo , Neurônios Aferentes/metabolismo , Neurônios Motores/metabolismo , Colo/inervação
3.
Am J Physiol Gastrointest Liver Physiol ; 325(1): G62-G79, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37162180

RESUMO

Patients with irritable bowel syndrome (IBS) have recurrent lower abdominal pain, associated with altered bowel habit (diarrhea and/or constipation). As bowel habit is altered, abnormalities in colonic motility are likely to contribute; however, characterization of colonic motor patterns in patients with IBS remains poor. Utilizing fiber-optic manometry, we aimed to characterize distal colonic postprandial colon motility in diarrhea-predominant IBS. After an overnight fast, a 72-sensor (spaced at 1-cm intervals) manometry catheter was colonoscopically placed to the proximal colon, in 13 patients with IBS-D and 12 healthy adults. Recordings were taken for 2 h pre and post a 700 kcal meal. Data were analyzed with our two developed automated techniques. In both healthy adults and patients with IBS-D, the dominant frequencies of pressure waves throughout the colon are between 2 and 4 cycles per minute (cpm) and the power of these frequencies increased significantly after a meal. Although these pressure waves formed propagating contractions in both groups, the postprandial propagating contraction increase was significantly smaller in patients compared with healthy adults. In healthy adults during the meal period, retrograde propagation between 2 and 8 cpm was significantly greater than antegrade propagation at the same frequencies. This difference was not observed in IBS-D. Patients with IBS-D show reduced prevalence of the retrograde cyclic motor pattern postprandially compared with the marked prevalence in healthy adults. We hypothesize that this reduction may allow premature rectal filling, leading to postprandial urgency and diarrhea.NEW & NOTEWORTHY Compared with healthy adults this study has shown a significant reduction in the prevalence of the postprandial retrograde cyclic motor pattern in the distal colon of patients with diarrhea-predominant irritable bowel syndrome. We hypothesize that this altered motility may allow for premature rectal filling which contributes to the postprandial urgency and diarrhea experienced by these patients.


Assuntos
Síndrome do Intestino Irritável , Adulto , Humanos , Colo , Constipação Intestinal , Diarreia , Reto , Período Pós-Prandial , Motilidade Gastrointestinal
4.
Neurogastroenterol Motil ; 35(4): e14538, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36740821

RESUMO

BACKGROUND: Ex vivo intracellular recordings and dye fills, combined with immunohistochemistry, are a powerful way to analyze the enteric nervous system of laboratory animals. METHODS: Myenteric neurons were recorded in isolated specimens of human colon. A key determinant of successful recording was near-complete removal of circular muscle from the surface of ganglia. KEY RESULTS: Treatment with a collagenase/neutral protease mix before dissection significantly improved recording success and reduced damage to the plexus. Carboxyfluorescein in microelectrodes allowed recorded neurons to be routinely labeled, analyzed, and subjected to multi-layer immunohistochemistry. Carboxyfluorescein revealed morphological details that were not detected by immunohistochemical methods. Of 54 dye-filled myenteric neurons (n = 22), 45 were uni-axonal and eight were multi-axonal. There was a significant bias toward recordings from large neural somata. The close association between morphology and electrophysiology (long after-hyperpolarizations and fast EPSPs) seen in mice and guinea pigs did not hold for human myenteric neuron recordings. No slow EPSPs were recorded; however, disruption to the myenteric plexus during dissection may have led the proportion of cells receiving synaptic potentials to be underestimated. Neurons immunoreactive for nitric oxide synthase were more excitable than non-immunoreactive neurons. Distinctive grooves were observed on the serosal and/or mucosal faces of myenteric neurons in 3D reconstructions. These had varicose axons running through them and may represent a preferential site of synaptic inputs. CONCLUSIONS: Human enteric neurons share many features with laboratory animals, but the combinations of features in individual cells appear more variable.


Assuntos
Plexo Mientérico , Neurônios , Humanos , Camundongos , Animais , Cobaias , Eletrofisiologia , Neurônios/fisiologia , Fluoresceínas , Plexo Mientérico/fisiologia , Colo/fisiologia
5.
Physiol Rep ; 11(1): e15567, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36636780

RESUMO

The speed of pellet propulsion through the isolated guinea pig distal colon in vitro significantly exceeds in vivo measurements, suggesting a role for inhibitory mechanisms from sources outside the gut. The aim of this study was to investigate the effects of sympathetic nerve stimulation on three different neurogenic motor behaviors of the distal colon: transient neural events (TNEs), colonic motor complexes (CMCs), and pellet propulsion. To do this, segments of guinea pig distal colon with intact connections to the inferior mesenteric ganglion (IMG) were set up in organ baths allowing for simultaneous extracellular suction electrode recordings from smooth muscle, video recordings for diameter mapping, and intraluminal manometry. Electrical stimulation (1-20 Hz) of colonic nerves surrounding the inferior mesenteric artery caused a statistically significant, frequency-dependent inhibition of TNEs, as well as single pellet propulsion, from frequencies of 5 Hz and greater. Significant inhibition of CMCs required stimulation frequencies of 10 Hz and greater. Phentolamine (3.6 µM) abolished effects of colonic nerve stimulation, consistent with a sympathetic noradrenergic mechanism. Sympathetic inhibition was constrained to regions with intact extrinsic nerve pathways, allowing normal motor behaviors to continue without modulation in adjacent extrinsically denervated regions of the same colonic segments. The results demonstrate differential sensitivities to sympathetic input among distinct neurogenic motor behaviors of the colon. Together with findings indicating CMCs activate colo-colonic sympathetic reflexes through the IMG, these results raise the possibility that CMCs may paradoxically facilitate suppression of pellet movement in vivo, through peripheral sympathetic reflex circuits.


Assuntos
Gânglios Simpáticos , Sistema Nervoso Simpático , Cobaias , Animais , Gânglios Simpáticos/fisiologia , Reflexo/fisiologia , Colo/inervação , Atividade Motora , Estimulação Elétrica
6.
Front Neurosci ; 17: 1313057, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38292899

RESUMO

Background and Aims: Viscerofugal neurons (VFNs) have cell bodies in the myenteric plexus and axons that project to sympathetic prevertebral ganglia. In animals they activate sympathetic motility reflexes and may modulate glucose metabolism and feeding. We used rapid retrograde tracing from colonic nerves to identify VFNs in human colon for the first time, using ex vivo preparations with multi-layer immunohistochemistry. Methods: Colonic nerves were identified in isolated preparations of human colon and set up for axonal tracing with biotinamide. After fixation, labeled VFN cell bodies were subjected to multiplexed immunohistochemistry for 12 established nerve cell body markers. Results: Biotinamide tracing filled 903 viscerofugal nerve cell bodies (n = 23), most of which (85%) had axons projecting orally before entering colonic nerves. Morphologically, 97% of VFNs were uni-axonal. Of 215 VFNs studied in detail, 89% expressed ChAT, 13% NOS, 13% calbindin, 9% enkephalin, 7% substance P and 0 of 123 VFNs expressed CART. Few VFNs contained calretinin, VIP, 5HT, CGRP, or NPY. VFNs were often surrounded by dense baskets of axonal varicosities, probably reflecting patterns of connectivity; VAChT+ (cholinergic), SP+ and ENK+ varicosities were most abundant around them. Human VFNs were diverse; showing 27 combinations of immunohistochemical markers, 4 morphological types and a wide range of cell body sizes. However, 69% showed chemical coding, axonal projections, soma-dendritic morphology and connectivity similar to enteric excitatory motor neurons. Conclusion: Viscerofugal neurons are present in human colon and show very diverse combinations of features. High proportions express ChAT, consistent with cholinergic synaptic outputs onto postganglionic sympathetic neurons in prevertebral ganglia.

7.
Front Neurosci ; 16: 1072002, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532291

RESUMO

Background: In the human large bowel, sacral parasympathetic nerves arise from S2 to S4, project to the pelvic plexus ("hypogastric plexus") and have post-ganglionic axons entering the large bowel near the rectosigmoid junction. They then run long distances orally or aborally within the bowel wall forming "ascending nerves" or "shunt fascicles" running in the plane of the myenteric plexus. They form bundles of nerve fibres that can be distinguished from the myenteric plexus by their straight orientation, tendency not to merge with myenteric ganglia and greater width. Aim: To identify reliable marker(s) to distinguish these bundles of ascending nerves from other extrinsic and intrinsic nerves in human colon. Methods: Human colonic segments were obtained with informed consent, from adult patients undergoing elective surgery (n = 21). Multi-layer immunohistochemical labelling with neurofilament-H (NF200), myelin basic protein (MBP), von Willebrand factor (vWF), and glucose transporter 1 (GLUT1), and rapid anterograde tracing with biotinamide, were used to compare ascending nerves and lumbar colonic nerves. Results: The rectosigmoid and rectal specimens had 6-11 ascending nerves spaced around their circumference. Distal colon specimens typically had 1-3 ascending nerves, with one located near the mesenteric taenia coli. No ascending nerves were observed in ascending colon specimens. GLUT1 antisera labelled both sympathetic lumbar colonic nerves and ascending nerves in the gut wall. Lumbar colonic nerves joined the myenteric plexus and quickly lost GLUT1 labelling, whereas GLUT1 staining labelled parasympathetic ascending nerves over many centimetres. Conclusion: Ascending nerves can be distinguished in the colorectum of humans using GLUT1 labelling combined with NF200.

8.
Adv Exp Med Biol ; 1383: 89-103, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36587149

RESUMO

The autonomic nervous system that regulates the gut is divided into sympathetic (SNS), parasympathetic (PNS), and enteric nervous systems (ENS). They inhibit, permit, and coordinate gastrointestinal motility, respectively. A fourth pathway, "extrinsic sensory neurons," connect gut to the central nervous system, mediating sensation. The ENS resides within the gut wall and its activities are critical for life; ENS failure to populate the gut in development is lethal without intervention."Viscerofugal neurons" are a distinctive class of enteric neurons, being the only type that escapes the gut wall. They form a unique circuit: their axons project out of the gut wall and activate sympathetic neurons, which then project back to the gut, and inhibit gut movements.For 80 years viscerofugal/sympathetic circuits were thought to have a restricted role, mediating simple sensory-motor reflexes. New data shows viscerofugal and sympathetic neurons behaving unexpectedly, compelling a re-evaluation of these circuits: both viscerofugal and sympathetic neurons transmit higher order, synchronized firing patterns that originate within the ENS. This identifies them as driving long-range motility control between different gut regions.There is need for gut motor control over distances beyond the range of ENS circuits, yet no mechanism has been identified to date. The entero-sympathetic circuits are ideally suited to meet this need. Here we provide an overview of the structure and functions of these peripheral sympathetic circuits, including new data showing the firing patterns generated by enteric networks can transmit through sympathetic neurons.


Assuntos
Sistema Nervoso Entérico , Sistema Nervoso Entérico/metabolismo , Sistema Nervoso Autônomo , Sistema Nervoso Simpático , Células Receptoras Sensoriais , Sistema Nervoso Central
9.
Adv Exp Med Biol ; 1383: 243-249, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36587163

RESUMO

Distinguishing and characterising the different classes of neurons that make up a neural circuit has been a long-term goal for many neuroscientists. The enteric nervous system is a large but moderately simple part of the nervous system. Enteric neurons in laboratory animals have been extensively characterised morphologically, electrophysiologically, by projections and immunohistochemically. However, studies of human enteric nervous system are less advanced despite the potential availability of tissue from elective surgery (with appropriate ethics permits). Recent studies using single cell sequencing have confirmed and extended the classification of enteric neurons in mice and human, but it is not clear whether an encompassing classification has been achieved. We present preliminary data on a means to distinguish classes of myenteric neurons in specimens of human colon combining immunohistochemical, morphological, projection and size data on single cells. A method to apply multiple layers of antisera to specimens was developed, allowing up to 12 markers to be characterised in individual neurons. Applied to multi-axonal Dogiel type II neurons, this approach demonstrated that they constitute fewer than 5% of myenteric neurons, are nearly all immunoreactive for choline acetyltransferase and tachykinins. Many express the calcium-binding proteins calbindin and calretinin and they are larger than average myenteric cells. This methodology provides a complementary approach to single-cell mRNA profiling to provide a comprehensive account of the types of myenteric neurons in the human colon.


Assuntos
Sistema Nervoso Entérico , Plexo Mientérico , Humanos , Camundongos , Animais , Plexo Mientérico/metabolismo , Proteína G de Ligação ao Cálcio S100/metabolismo , Sistema Nervoso Entérico/metabolismo , Neurônios/fisiologia , Colo/metabolismo
10.
Adv Exp Med Biol ; 1383: 295-306, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36587167

RESUMO

The enteric nervous system (ENS) is required for many cyclical patterns of motor activity along different regions of the gastrointestinal (GI) tract. What has remained mysterious is precisely how many thousands of neurons within the ENS are temporally activated to generate cyclical neurogenic contractions of GI-smooth muscle layers. This has been an especially puzzling conundrum, since the ENS consists of an extensive network of small ganglia, with each ganglion consisting of a heterogeneous population of neurons, with diverse cell soma morphologies, neurochemical and biophysical characteristics, and neural connectivity. Neuronal imaging studies of the mouse large intestine have provided major new insights into how the different classes of myenteric neurons are activated during cyclical neurogenic motor patterns, such as the colonic motor complex (CMC). It has been revealed that during CMCs (in the isolated mouse whole colon), large populations of myenteric neurons, across large spatial fields, coordinate their firing, via bursts of fast synaptic inputs at ~2 Hz. This coordinated firing of many thousands of myenteric neurons synchronously over many rows of interconnected ganglia occurs irrespective of the functional class of neuron. Aborally directed propulsion of content along the mouse colon is due, in large part, to polarity of the enteric circuits including the projections of the intrinsic excitatory and inhibitory motor neurons but still involves the fundamental ~2 Hz rhythmic activity of specific classes of enteric neurons. What remains to be determined are the mechanisms that initiate and terminate the patterned firing of large ensembles of enteric neurons during cyclic activity. This remains an exciting challenge for future studies.


Assuntos
Sistema Nervoso Entérico , Camundongos , Animais , Sistema Nervoso Entérico/fisiologia , Trato Gastrointestinal , Colo , Neurônios Motores/fisiologia , Periodicidade
11.
Adv Exp Med Biol ; 1383: 271-294, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36587166

RESUMO

Over 150 years ago, methods for quantitative analysis of gastrointestinal motor patterns first appeared. Graphic representations of physiological variables were recorded with the kymograph after the mid-1800s. Changes in force or length of intestinal muscles could be quantified, however most recordings were limited to a single point along the digestive tract.In parallel, photography and cinematography with X-Rays visualised changes in intestinal shape, but were hard to quantify. More recently, the ability to record physiological events at many sites along the gut in combination with computer processing allowed construction of spatiotemporal maps. These included diameter maps (DMaps), constructed from video recordings of intestinal movements and pressure maps (PMaps), constructed using data from high-resolution manometry catheters. Combining different kinds of spatiotemporal maps revealed additional details about gut wall status, including compliance, which relates forces to changes in length. Plotting compliance values along the intestine enabled combined DPMaps to be constructed, which can distinguish active contractions and relaxations from passive changes. From combinations of spatiotemporal maps, it is possible to deduce the role of enteric circuits and pacemaker cells in the generation of complex motor patterns. Development and application of spatiotemporal methods to normal and abnormal motor patterns in animals and humans is ongoing, with further technical improvements arising from their combination with impedance manometry, magnetic resonance imaging, electrophysiology, and ultrasonography.


Assuntos
Motilidade Gastrointestinal , Intestino Delgado , Humanos , Animais , Motilidade Gastrointestinal/fisiologia , Manometria/métodos , Gravação em Vídeo , Músculos
12.
Anal Methods ; 14(48): 5100-5109, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36472141

RESUMO

A solid phase extraction-based (SPE) procedure for simultaneous preconcentration of five tricyclic antidepressants (TCAs), amitriptyline hydrochloride (AMT), nortriptyline hydrochloride (NOR), doxepin hydrochloride (DOX), imipramine hydrochloride (IMI), and clomipramine hydrochloride (CLO) from water samples with determination by HPLC-DAD is proposed. Polymers were characterized by FT-IR, SEM, and thermogravimetric analysis. SPE-based methods were carried out by the preconcentration of 320.0 mL of TCAs at pH 7.0 (buffered with 0.01 mol L-1 phosphate buffer) through 70.0 mg of adsorbent packed into a SPE cartridge, followed by elution with 1.0 mL of ACN : MeOH : acetic acid solution (45 : 45 : 10% v/v). Higher preconcentration factors were obtained ranging from 117.9 to 372.2 and 207.1 to 396.1 by using poly(MAA-co-EGDMA) and poly(AA-co-EGDMA), respectively, yielding lower limits of detection (0.03 to 0.12 µg L-1) and (0.03 to 0.15 µg L-1). These outcomes show satisfactory detectability of SPE-based methods, with slightly better performance using poly(MAA-co-EGDMA). On the other hand, poly(AA-co-EGDMA) was able to preconcentrate TCAs in the presence of humic acid (7.0 mg L-1) without interference. The precision of methods assessed as RSD (%) was very similar, ranging from 1.7% to 16.3% for poly(MAA-co-EGDMA) and 1.7% to 13.4% for poly(AA-co-EGDMA). SPE cartridges packed with the polymers showed high reusability (52 cycles of preconcentration and elution) without losing adsorption efficiency. The methods were applied to determine TCAs in tap, lake, and stream water samples and the accuracy was attested by addition and recovery tests (86.7-116.0%), with determined nortriptyline ranging from 0.48 to 0.52 µg L-1 in lake water samples.


Assuntos
Antidepressivos Tricíclicos , Extração em Fase Sólida , Antidepressivos Tricíclicos/análise , Espectroscopia de Infravermelho com Transformada de Fourier , Extração em Fase Sólida/métodos , Resinas Acrílicas/análise , Nortriptilina , Água
13.
Neurogastroenterol Motil ; 34(11): e14442, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36054796

RESUMO

BACKGROUND: In most animal species, opioids alter colonic motility via the inhibition of excitatory enteric motor neurons. The mechanisms by which opioids alter human colonic motility are unclear. The aim of this study was to describe the effects of loperamide on neuromuscular function in the human colon. METHODS: Tissue specimens of human colon from 10 patients undergoing an anterior resection were divided into three inter-taenial circular muscle strips. Separate organ baths were used to assess: (1) excitatory transmission (selective blockade of inhibitory transmission: L-NOARG/MRS2179); (2) inhibitory transmission (selective blockade of excitatory transmission: hyoscine hydrobromide); and (3) a control bath (no drug additions). Neuromuscular function was assessed using force transducer recordings and electrical field stimulation (EFS; 20 V, 10 Hz, 0.5 ms, 10 s) prior to and following loperamide and naloxone. KEY RESULTS: In human preparations with L-NOARG/MRS2179, loperamide had no significant effects on isometric contractions. In preparations with hyoscine hydrobromide, loperamide reduced isometric relaxation during EFS (median difference + 0.60 g post-loperamide, Z = -2.35, p = 0.019). CONCLUSIONS AND INFERENCES: Loperamide had no effect on excitatory neuromuscular function in human colonic circular muscle. These findings suggest that loperamide alters colonic function by acting primarily on inhibitory motor neurons, premotor enteric neurons, or via alternative non-opioid receptor pathways.


Assuntos
Loperamida , Escopolamina , Animais , Colo , Estimulação Elétrica , Motilidade Gastrointestinal , Humanos , Loperamida/farmacologia , Contração Muscular/fisiologia , Naloxona/farmacologia , Nitroarginina/farmacologia , Escopolamina/farmacologia
14.
J Comp Neurol ; 530(18): 3209-3225, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36043843

RESUMO

Quantitative data of biological systems provide valuable baseline information for understanding pathology, experimental perturbations, and computational modeling. In mouse colon, calcitonin gene-related peptide (CGRP) is expressed by myenteric neurons with multiaxonal (Dogiel type II) morphology, characteristic of intrinsic primary afferent neurons (IPANs). Analogous neurons in other species and gut regions represent 5-35% of myenteric neurons. We aimed to quantify proportions of CGRP-immunopositive (CGRP+) myenteric neurons. Colchicine-treated wholemount preparations of proximal, mid, and distal colon were labeled for HuC/D, CGRP, nitric oxide synthase (NOS), and peripherin (Per). The pan-neuronal markers (Hu+/Per+) co-labeled 94% of neurons. Hu+/Per- neurons comprised ∼6%, but Hu-/Per+ cells were rare. Thus, quantification was based on Hu+ myenteric neurons (8576 total; 1225 ± 239 per animal, n = 7). CGRP+ cell bodies were significantly larger than the average of all Hu+ neurons (329 ± 13 vs. 261 ± 12 µm2 , p < .0001). CGRP+ neurons comprised 19% ± 3% of myenteric neurons without significant regional variation. NOS+ neurons comprised 42% ± 2% of myenteric neurons overall, representing a lower proportion in proximal colon, compared to mid and distal colon (38% ± 2%, 44% ± 2%, and 44% ± 3%, respectively). Peripherin immunolabeling revealed cell body and axonal morphology in some myenteric neurons. Whether all CGRP+ neurons were multiaxonal could not be addressed using peripherin immunolabeling. However, of 118 putatively multiaxonal neurons first identified based on peripherin immunoreactivity, all were CGRP+ (n = 4). In conclusion, CGRP+ myenteric neurons in mouse colon were comprehensively quantified, occurring within a range expected of a putative IPAN marker. All Per+ multiaxonal neurons, characteristic of Dogiel type II/IPAN morphology, were CGRP+.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Plexo Mientérico , Camundongos , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Periferinas/metabolismo , Neurônios/metabolismo , Colo , Óxido Nítrico Sintase/metabolismo , Colchicina/metabolismo
15.
Am J Physiol Gastrointest Liver Physiol ; 323(2): G71-G87, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35502864

RESUMO

Colonic motor complexes (CMCs) are a major neurogenic activity in guineapig distal colon. The identity of the enteric neurons that initiate this activity is not established. Specialized intrinsic primary afferent neurons (IPANs) are a major candidate. We aimed to test this hypothesis. To do this, segments of guineapig distal colon were suspended vertically in heated organ baths and propulsive forces acting on a pellet inside the lumen were recorded by isometric force transducer while pharmacological agents were applied to affect IPAN function. In the absence of drugs, CMCs acted periodically on the pellet, generating peak propulsive forces of 12.7 ± 5 g at 0.56 ± 0.22 cpm, lasting 49 ± 17 s (215 preparations; n = 60). Most but not all CMCs were abolished by nicotinic receptor blockade to inhibit fast excitatory synaptic transmission (50/62 preparations; n = 25). Remarkably, CMCs inhibited by hexamethonium were restored by a pharmacological strategy that aimed to enhance IPAN excitability. Thus, CMCs were restored by increased smooth muscle tension (using BAY K8644, bethanechol or carbachol) and by IPAN excitation using phorbol dibutyrate; NK3 receptor agonist, senktide; and partially by αCGRP. The IPAN inhibitor, 5,6-dichloro-1-ethyl-1,3-dihydro-2H-benzimidazole-2-one (DCEBIO), decreased CMC frequency. CGRP, but not NK3-receptor antagonists, decreased CMC frequency in naive preparations. Finally, CMCs were blocked by tetrodotoxin, and this was not reversed by any drugs listed above. These results support a major role for IPANs that does not require fast synaptic transmission, in the periodic initiation of neurogenic propulsive contractions. Endogenous CGRP plays a role in determining CMC frequency, whereas further unidentified signaling pathways may determine their amplitude and duration.NEW & NOTEWORTHY The colonic motor complex (CMC) initiates propulsion in guinea pig colon. Here, CMCs evoked by an intraluminal pellet were restored during nicotinic receptor blockade by pharmacological agents that directly or indirectly enhance intrinsic primary afferent neuron (IPAN) excitability. IPANs are the only enteric neuron in colon that contain CGRP. Blocking CGRP receptors decreased CMC frequency, implicating their role in CMC initiation. The results support a role for IPANs in the initiation of CMCs.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Receptores Nicotínicos , Animais , Colo , Cobaias , Hexametônio/farmacologia , Transmissão Sináptica
16.
ANZ J Surg ; 92(6): 1365-1370, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35403788

RESUMO

BACKGROUND: There are considerable advantages and opportunities for surgeons and trainee surgeons in conducting a period of research allied with basic scientists. Such clinicians are well placed to define relevant clinical questions, provide human material (tissue, biopsy and blood) and translate the techniques derived in experimental animals to human subjects. METHODS: This small review explores research conducted on the nervous system of the intestines, with an emphasis on the translation of findings from animal to human. RESULTS: This work shows that new techniques of immunohistochemistry and retrograde tracing, developed in animal tissue, have greatly expanded our knowledge of the structure of the human enteric nervous system. CONCLUSIONS: Such findings have sparked therapeutic trials for the treatment of gastrointestinal disorders in patients.


Assuntos
Sistema Nervoso Entérico , Gastroenteropatias , Animais , Sistema Nervoso Entérico/patologia , Sistema Nervoso Entérico/fisiologia , Gastroenteropatias/patologia , Humanos , Intestinos
17.
Neurogastroenterol Motil ; 34(1): e14178, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34076936

RESUMO

BACKGROUND: The colonic motor patterns associated with gas transit are poorly understood. This study describes the application of high-resolution impedance manometry (HRiM) in the human colon in vivo to characterize distal colonic motility and gas transit; (a) after a meal and (b) after intraluminal gas insufflation into the sigmoid colon. METHODS: HRiM recordings were performed in 19 healthy volunteers, with sensors positioned from the distal descending colon to the proximal rectum. Protocol 1 (n = 10) compared pressure and impedance prior to and after a meal. Protocol 2 (n = 9) compared pressure and impedance before and after gas insufflation into the sigmoid colon (60 mL total volume). KEY RESULTS: Both the meal and gas insufflation resulted in an increase in the prevalence of the 2-8/minute "cyclic motor pattern" (meal: (t(9) = -6.42, P<0.001); gas insufflation (t(8) = -3.13, P = 0.01)), and an increase in the number of antegrade and retrograde propagating impedance events (meal: Z = -2.80, P = 0.005; gas insufflation Z = -2.67, P = 0.008). Propagating impedance events temporally preceded antegrade and retrograde propagating contractions, representing a column of luminal gas being displaced ahead of a propagating contraction. Three participants reported an urge to pass flatus and/or flatus during the studies. CONCLUSIONS AND INFERENCES: Initiation of the 2-8/minute cyclic motor pattern in the distal colon occurs both following a meal and/or as a localized sensorimotor response to gas. The near-absence of a flatal urge and the temporal association between propagating contractions and gas transit supports the hypothesis that the 2-8/minute cyclic motor pattern acts as a physiological "brake" modulating rectal filling.


Assuntos
Colo/fisiologia , Motilidade Gastrointestinal/fisiologia , Trânsito Gastrointestinal/fisiologia , Manometria/métodos , Adulto , Idoso , Impedância Elétrica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
18.
J Physiol ; 599(20): 4561-4579, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34418078

RESUMO

Soft faecal material is transformed into discrete, pellet-shaped faeces at the colonic flexure. Here, analysis of water content in natural faecal material revealed a decline from cecum to rectum without significant changes at the flexure. Thus, pellet formation is not explained by changes in viscosity alone. We then used video imaging of colonic wall movements with electromyography in isolated preparations containing guinea-pig proximal colon, colonic flexure and distal colon. To investigate the pellet formation process, the colonic segments were infused with artificial contents (Krebs solution and 4-6% methylcellulose) to simulate physiological faecal content flow. Remarkably, pellet formation took place in vitro, without extrinsic neural inputs. Infusion evoked slowly propagating neurogenic contractions, the proximal colon migrating motor complexes (∼0.6 cpm), which initiated pellet formation at the flexure. Lesion of the flexure, but not the proximal colon, disrupted the formation of normal individual pellets. In addition, a distinct myogenic mechanism was identified, whereby slow phasic contractions (∼1.9 cpm) initiated at the flexure and propagated short distances retrogradely into the proximal colon and antegradely into the distal colon. There were no detectable changes in the density or distribution of pacemaker-type interstitial cells of Cajal across the flexure. The findings provide new insights into how solid faecal content is generated, suggesting the major mechanisms underlying faecal pellet formation involve the unique interaction at the colonic flexure between antegrade proximal colon migrating motor complexes, organized by enteric neurons, and retrograde myogenic slow phasic contractions. Additional, as yet unidentified extrinsic and/or humoral influences appear to contribute to processing of faecal content in vivo. KEY POINTS: In herbivores, including guinea-pigs, clearly defined faecal pellets are formed at a distinct location along the large intestine (colonic flexure). The mechanism underlying the formation of these faecal pellets at this region has remained unknown. We reveal a progressive and gradual reduction in water content of faecal content along the bowel. Hence, the distinct transition from amorphous to pellet shaped faecal content could not be explained by a dramatic increase in water reabsorption from a specific site. We discovered patterns of anterograde neurogenic and retrograde myogenic motor activity that facilitate the formation of faecal pellets. The formation of 'pellet-like' boluses at the colonic flexure involves interaction of an antegrade migrating motor complex in the proximal colon and retrograde myogenic slow phasic contractions that emerge from the colonic flexure. The findings uncover intrinsic mechanisms responsible for the formation of discrete faecal scybala in the large intestine of a vertebrate.


Assuntos
Motilidade Gastrointestinal , Complexo Mioelétrico Migratório , Animais , Colo , Fezes , Cobaias , Intestino Grosso
19.
Commun Biol ; 4(1): 955, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376798

RESUMO

How the Enteric Nervous System (ENS) coordinates propulsion of content along the gastrointestinal (GI)-tract has been a major unresolved issue. We reveal a mechanism that explains how ENS activity underlies propulsion of content along the colon. We used a recently developed high-resolution video imaging approach with concurrent electrophysiological recordings from smooth muscle, during fluid propulsion. Recordings showed pulsatile firing of excitatory and inhibitory neuromuscular inputs not only in proximal colon, but also distal colon, long before the propagating contraction invades the distal region. During propulsion, wavelet analysis revealed increased coherence at ~2 Hz over large distances between the proximal and distal regions. Therefore, during propulsion, synchronous firing of descending inhibitory nerve pathways over long ranges aborally acts to suppress smooth muscle from contracting, counteracting the excitatory nerve pathways over this same region of colon. This delays muscle contraction downstream, ahead of the advancing contraction. The mechanism identified is more complex than expected and vastly different from fluid propulsion along other hollow smooth muscle organs; like lymphatic vessels, portal vein, or ureters, that evolved without intrinsic neurons.


Assuntos
Sistema Nervoso Entérico/fisiologia , Contração Muscular/fisiologia , Músculo Liso/fisiologia , Animais , Colo/inervação , Colo/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso/inervação
20.
Am J Physiol Gastrointest Liver Physiol ; 321(3): G325-G334, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34231391

RESUMO

Bisacodyl is a stimulant laxative often used in manometric studies of pediatric constipation to determine if it can initiate propulsive high-amplitude propagating contractions (HAPCs). Whereas the effects of bisacodyl infusion on colonic motility are well described, the effects of the drug on other regions of the gut after colonic infusion are not known. The aim of the present study was to characterize the effects of bisacodyl on both colonic and small bowel motility. Twenty-seven children (9.3 ± 1.2 yr) undergoing simultaneous high-resolution antroduodenal and colonic manometry were included. Small bowel and colonic motor patterns were assessed before and after colonic infusion of bisacodyl. Patients were divided into two groups: responders and nonresponders based on the presence of high-amplitude propagating contractions (HAPCs) after bisacodyl infusion. Nineteen patients were responders. A total of 188 postbisacodyl HAPCs was identified with a mean count of 10.4 ± 5.5 (range, 3-22), at a frequency of 0.6 ± 0.2/min and mean amplitude of 119.8 ± 23.6 mmHg. No motor patterns were induced in the small bowel. However, in the 19 responders the onset of HAPCs was associated with a significant decrease in small bowel contractile activity. In the nonresponders, there was no detectable change in small bowel motility after bisacodyl infusion. Bisacodyl-induced HAPCs are associated with a significant reduction in small bowel motility probably mediated by extrinsic sympathetic reflex pathways. This inhibition is potentially related to rectal distension, caused by the HAPC anal propulsion of colonic content.NEW & NOTEWORTHY The present study has shown, for the first time, that the presence of high-amplitude propagating contractions induced by bisacodyl is associated with a significant reduction in small bowel motility. These findings support of possible existence of a reflex pathway that causes inhibition of small bowel motility in response to rectal distension.


Assuntos
Bisacodil/farmacologia , Motilidade Gastrointestinal/efeitos dos fármacos , Jejuno/efeitos dos fármacos , Contração Muscular/efeitos dos fármacos , Colo/efeitos dos fármacos , Constipação Intestinal/tratamento farmacológico , Duodeno/efeitos dos fármacos , Motilidade Gastrointestinal/fisiologia , Humanos , Laxantes/uso terapêutico , Contração Muscular/fisiologia , Doenças da Bexiga Urinária/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...